1. Bright, AR, van Genesen, S, Li, Q, Grasso, A, Frölich, S, van der Sande, M et al.. Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates. EMBO J. 2021;40 (9):e104913. doi: 10.15252/embj.2020104913. PubMed PMID:33555045 PubMed Central PMC8090851.
  2. Perino, M, van Mierlo, G, Loh, C, Wardle, SMT, Zijlmans, DW, Marks, H et al.. Two Functional Axes of Feedback-Enforced PRC2 Recruitment in Mouse Embryonic Stem Cells. Stem Cell Reports. 2020;15 (6):1287-1300. doi: 10.1016/j.stemcr.2020.07.007. PubMed PMID:32763159 PubMed Central PMC7724473.
  3. Peñalosa-Ruiz, G, Mulder, KW, Veenstra, GJC. The corepressor NCOR1 and OCT4 facilitate early reprogramming by suppressing fibroblast gene expression. PeerJ. 2020;8 :e8952. doi: 10.7717/peerj.8952. PubMed PMID:32351783 PubMed Central PMC7183309.
  4. Gilchrist, MJ, Cho, KWY, Veenstra, GJC. Genomics Methods for Xenopus Embryos and Tissues. Cold Spring Harb Protoc. 2020;2020 (5):097915. doi: 10.1101/pdb.top097915. PubMed PMID:32123020 PubMed Central PMC7337993.
  5. Gilchrist, MJ, Veenstra, GJC, Cho, KWY. Transcriptomics and Proteomics Methods for Xenopus Embryos and Tissues. Cold Spring Harb Protoc. 2020;2020 (2):098350. doi: 10.1101/pdb.top098350. PubMed PMID:31772075 PubMed Central PMC7362671.
  6. Peñalosa-Ruiz, G, Bright, AR, Mulder, KW, Veenstra, GJC. The interplay of chromatin and transcription factors during cell fate transitions in development and reprogramming. Biochim Biophys Acta Gene Regul Mech. 2019;1862 (9):194407. doi: 10.1016/j.bbagrm.2019.194407. PubMed PMID:31356991 .
  7. van Mierlo, G, Veenstra, GJC, Vermeulen, M, Marks, H. The Complexity of PRC2 Subcomplexes. Trends Cell Biol. 2019;29 (8):660-671. doi: 10.1016/j.tcb.2019.05.004. PubMed PMID:31178244 .
  8. Peñalosa-Ruiz, G, Bousgouni, V, Gerlach, JP, Waarlo, S, van de Ven, JV, Veenstra, TE et al.. WDR5, BRCA1, and BARD1 Co-regulate the DNA Damage Response and Modulate the Mesenchymal-to-Epithelial Transition during Early Reprogramming. Stem Cell Reports. 2019;12 (4):743-756. doi: 10.1016/j.stemcr.2019.02.006. PubMed PMID:30880078 PubMed Central PMC6449870.
  9. Lindeboom, RGH, Smits, AH, Perino, M, Veenstra, GJC, Vermeulen, M. Mass Spectrometry-Based Absolute Quantification of Single Xenopus Embryo Proteomes. Cold Spring Harb Protoc. 2019;2019 (6):. doi: 10.1101/pdb.prot098376. PubMed PMID:30104410 .
  10. Hontelez, S, van Kruijsbergen, I, Veenstra, GJC. ChIP-Sequencing in Xenopus Embryos. Cold Spring Harb Protoc. 2019;2019 (1):. doi: 10.1101/pdb.prot097907. PubMed PMID:30042137 .
  11. Bright, AR, Veenstra, GJC. Assay for Transposase-Accessible Chromatin-Sequencing Using Xenopus Embryos. Cold Spring Harb Protoc. 2019;2019 (1):. doi: 10.1101/pdb.prot098327. PubMed PMID:30042136 .
  12. Perino, M, van Mierlo, G, Karemaker, ID, van Genesen, S, Vermeulen, M, Marks, H et al.. MTF2 recruits Polycomb Repressive Complex 2 by helical-shape-selective DNA binding. Nat Genet. 2018;50 (7):1002-1010. doi: 10.1038/s41588-018-0134-8. PubMed PMID:29808031 .
  13. Gibeaux, R, Acker, R, Kitaoka, M, Georgiou, G, van Kruijsbergen, I, Ford, B et al.. Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. Nature. 2018;553 (7688):337-341. doi: 10.1038/nature25188. PubMed PMID:29320479 PubMed Central PMC5988642.
  14. Elurbe, DM, Paranjpe, SS, Georgiou, G, van Kruijsbergen, I, Bogdanovic, O, Gibeaux, R et al.. Regulatory remodeling in the allo-tetraploid frog Xenopus laevis. Genome Biol. 2017;18 (1):198. doi: 10.1186/s13059-017-1335-7. PubMed PMID:29065907 PubMed Central PMC5655803.
  15. Kompatscher, A, de Baaij, JHF, Aboudehen, K, Hoefnagels, APWM, Igarashi, P, Bindels, RJM et al.. Loss of transcriptional activation of the potassium channel Kir5.1 by HNF1β drives autosomal dominant tubulointerstitial kidney disease. Kidney Int. 2017;92 (5):1145-1156. doi: 10.1016/j.kint.2017.03.034. PubMed PMID:28577853 PubMed Central PMC5903269.
  16. Session, AM, Uno, Y, Kwon, T, Chapman, JA, Toyoda, A, Takahashi, S et al.. Genome evolution in the allotetraploid frog Xenopus laevis. Nature. 2016;538 (7625):336-343. doi: 10.1038/nature19840. PubMed PMID:27762356 PubMed Central PMC5313049.
  17. Suzuki, A, Yoshida, H, van Heeringen, SJ, Takebayashi-Suzuki, K, Veenstra, GJC, Taira, M et al.. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol. 2017;426 (2):336-359. doi: 10.1016/j.ydbio.2016.09.016. PubMed PMID:27692744 .
  18. Perino, M, Veenstra, GJ. Chromatin Control of Developmental Dynamics and Plasticity. Dev Cell. 2016;38 (6):610-20. doi: 10.1016/j.devcel.2016.08.004. PubMed PMID:27676434 .
  19. van Kruijsbergen, I, Hontelez, S, Elurbe, DM, van Heeringen, SJ, Huynen, MA, Veenstra, GJC et al.. Heterochromatic histone modifications at transposons in Xenopus tropicalis embryos. Dev Biol. 2017;426 (2):460-471. doi: 10.1016/j.ydbio.2016.08.031. PubMed PMID:27639284 PubMed Central PMC5350053.
  20. Hontelez, S, van Kruijsbergen, I, Georgiou, G, van Heeringen, SJ, Bogdanovic, O, Lister, R et al.. Erratum: Embryonic transcription is controlled by maternally defined chromatin state. Nat Commun. 2016;7 :12208. doi: 10.1038/ncomms12208. PubMed PMID:27378471 PubMed Central PMC4935964.
Search PubMed